skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pasic, Srdjan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. AbstractLeukopoiesis is lethally arrested in mice lacking the master transcriptional regulator PU.1. Depending on the animal model, subtotal PU.1 loss either induces acute myeloid leukemia or arrests early B-cell and dendritic-cell development. Although humans with absolute PU.1 deficiency have not been reported, a small cadre of congenital agammaglobulinemia patients with sporadic, inborn PU.1 haploinsufficiency was recently described. To better estimate the penetrance, clinical complications, immunophenotypic features, and malignancy risks of PU.1-mutated agammaglobulinemia (PU.MA), a collection of 134 novel or rare PU.1 variants from publicly available databases, institutional cohorts, previously published reports, and unsolved agammaglobulinemia cases were functionally analyzed. In total, 25 loss-of-function (LOF) variants were identified in 33 heterozygous carriers from 21 kindreds across 13 nations. Of individuals harboring LOF PU.1 variants, 22 were agammaglobulinemic, 5 displayed antibody deficiencies, and 6 were unaffected, indicating an estimated disease penetrance of 81.8% with variable expressivity. In a cluster of patients, disease onset was delayed, sometimes into adulthood. All LOF variants conveyed effects via haploinsufficiency, either by destabilizing PU.1, impeding nuclear localization, or directly interfering with transcription. PU.MA patient immunophenotypes consistently demonstrated B-cell, conventional dendritic-cell, and plasmacytoid dendritic-cell deficiencies. Associated infectious and noninfectious symptoms hewed closely to X-linked agammaglobulinemia and not monogenic dendritic-cell deficiencies. No carriers of LOF PU.1 variants experienced hematologic malignancies. Collectively, in vitro and clinical data indicate heterozygous LOF PU.1 variants undermine humoral immunity but do not convey strong leukemic risks. 
    more » « less
    Free, publicly-accessible full text available May 29, 2026